Thrombopoietin responsiveness reflects the number of doublings undergone by megakaryocyte progenitors.
نویسندگان
چکیده
To assess the variation of thrombopoietin (TPO) responsiveness associated with megakaryocyte (MK) progenitor amplification, TPO dose-response curves were obtained for normal human, single-cell plated CD34(+)CD41(+) cells. The number of MKs per well was determined in situ and expressed as number of doublings (NbD). Dose-response curves of the mean frequency of clones of each size versus log TPO concentration showed highly significant differences in the TPO concentration needed for half-maximum generation of clones of different sizes (TPO(50)): 1.89 +/- 0.51 pg/mL for 1 MK clones; 7.75 +/- 0.81 pg/mL for 2 to 3 MK clones; 38.5 +/- 5.04 pg/mL for 4 to 7 MK clones, and 91.8 +/- 16.0 pg/mL for 8 to 15 MK clones. These results were consistent with a prediction of the generation-age model, because the number of previous doublings in vivo was inversely correlated with the number of residual doublings in vitro. TPO responsiveness decreased in vitro by a factor of 3.5 per doubling, reflecting the recruitment of progressively more ancestral progenitors. In support of this hypothesis, the more mature CD34(+)CD41(+)CD42(+) cell fraction had a lower TPO(50) (P < .001), underwent fewer NbD (P < .001), and expressed a 2.8-fold greater median Mpl receptor density (P < .001) than the CD34(+)CD41(+)CD42(-) fraction. Progenitors that have completed their proliferative program have maximum factor responsiveness and are preferentially induced to terminal differentiation.
منابع مشابه
Thrombopoietin Responsiveness Reflects the Number of Doublings Undergone by Megakaryocyte Progenitors Short Title : Tpo Responsiveness of Megakaryocyte Progenitors
متن کامل
Phosphatidylinositol 3-kinase is necessary but not sufficient for thrombopoietin-induced proliferation in engineered Mpl-bearing cell lines as well as in primary megakaryocytic progenitors.
Thrombopoietin and its receptor (Mpl) support survival and proliferation in megakaryocyte progenitors and in BaF3 cells engineered to stably express Mpl (BaF3/Mpl). The binding of thrombopoietin to Mpl activates multiple kinase pathways, including the Jak/STAT, Ras/Raf/MAPK, and phosphatidylinositol 3-kinase pathways, but it is not clear how these kinases promote cell cycling. Here, we show tha...
متن کاملThrombopoietin: biology and potential clinical applications.
After an almost 40-year search for a primary regulatory of platelet production, thrombopoietin has recently been purified and cloned. Thrombopoietin regulates all stages in the production of platelets by promoting both the proliferation of megakaryocyte progenitors and their maturation into platelet-producing megakaryocytes. In preclinical studies in normal mice and non-human primates, administ...
متن کاملAnomalous megakaryocytopoiesis in mice with mutations in the c-Myb gene.
Mpl(-/-) mice bearing the Plt3 or Plt4 mutations in the c-Myb gene exhibit thrombopoietin (TPO)-independent supraphysiological platelet production accompanied by excessive megakaryocytopoiesis and defective erythroid and lymphoid cell production. To better define the cellular basis for the thrombocytosis in these mice, we analyzed the production and characteristics of megakaryocytes and their p...
متن کاملThrombopoietin, but not erythropoietin promotes viability and inhibits apoptosis of multipotent murine hematopoietic progenitor cells in vitro.
The recently cloned c-mpl ligand, thrombopoietin (Tpo), has been extensively characterized with regard to its ability to stimulate the growth, development, and ploidy of megakaryocyte progenitor cells and platelet production in vitro and in vivo. Primitive hematopoietic progenitors have been shown to express c-mpl, the receptor for Tpo. In the present study, we show that Tpo efficiently promote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 104 8 شماره
صفحات -
تاریخ انتشار 2004